El día de hoy estaba leyendo este blog y me encontré con la formulación original del problema P vs NP. Esta se redescubrió hasta 1988, y ya se había formulado por otro lado. Mejor dicho, los teóricos de la computación ya se habían formulado el problema, cuando encontraron que Kurt Gödel ya se lo había formulado en una carta hecha a John Von Neumann. El caso es que leyendo la carta me pareció interesante la manera tan diferente en que un científico de la computación y un matemático se plantena el mismo problema.
En este momento no voy a describir el problema desde la perspectiva de las Ciencias de la computación, esta pueden verla en wikipedia. Pero anexo la carta de Gödel a Neumann:
Princeton, 20 March 1956
Dear Mr. von Neumann:
With the greatest sorrow I have learned of your illness. The news came to me as quite unexpected. Morgenstern already last summer told me of a bout of weakness you once had, but at that time he thought that this was not of any greater significance. As I hear, in the last months you have undergone a radical treatment and I am happy that this treatment was successful as desired, and that you are now doing better. I hope and wish for you that your condition will soon improve even more and that the newest medical discoveries, if possible, will lead to a complete recovery.
Since you now, as I hear, are feeling stronger, I would like to allow myself to write you about a mathematical problem, of which your opinion would very much interest me: One can obviously easily construct a Turing machine, which for every formula F in first order predicate logic and every natural number n, allows one to decide if there is a proof of F of length n (length = number of symbols). Let ψ(F,n) be the number of steps the machine requires for this and let φ(n) = maxFψ(F,n).
The question is how fast φ(n) grows for an optimal machine. One can show that φ(n) ≥ k ⋅ n. If there really were a machine with φ(n) ∼ k ⋅ n (or even ∼ k ⋅ n2), this would have consequences of the greatest importance. Namely, it would obviously mean that in spite of the undecidability of the Entscheidungsproblem, the mental work of a mathematician concerning Yes-or-No questions could be completely replaced by a machine. After all, one would simply have to choose the natural number n so large that when the machine does not deliver a result, it makes no sense to think more about the problem. Now it seems to me, however, to be completely within the realm of possibility that φ(n) grows that slowly. Since
- it seems that φ(n) ≥ k ⋅ n is the only estimation which one can obtain by a generalization of the proof of the undecidability of the Entscheidungsproblem and
- after all φ(n) ∼ k ⋅ n (or ∼ k ⋅ n2) only means that the number of steps as opposed to trial and error can be reduced from N to log N (or (log N)2).
However, such strong reductions appear in other finite problems, for example in the computation of the quadratic residue symbol using repeated application of the law of reciprocity. It would be interesting to know, for instance, the situation concerning the determination of primality of a number and how strongly in general the number of steps in finite combinatorial problems can be reduced with respect to simple exhaustive search.
I do not know if you have heard that "Post's problem", whether there are degrees of unsolvability among problems of the form (∃ y) φ(y,x), where φ is recursive, has been solved in the positive sense by a very young man by the name of Richard Friedberg. The solution is very elegant. Unfortunately, Friedberg does not intend to study mathematics, but rather medicine (apparently under the influence of his father). By the way, what do you think of the attempts to build the foundations of analysis on ramified type theory, which have recently gained momentum? You are probably aware that Paul Lorenzen has pushed ahead with this approach to the theory of Lebesgue measure. However, I believe that in important parts of analysis non-eliminable impredicative proof methods do appear.
I would be very happy to hear something from you personally. Please let me know if there is something that I can do for you. With my best greetings and wishes, as well to your wife,
Sincerely yours,
Kurt Gödel
P.S. I heartily congratulate you on the award that the American government has given to you.
Vale la pena aclarar que cuando Gödel escribió esa carta. Él, Turing y von Newmann eran lo más parecido a un científico de la computación que existía. Esa carta, por tanto, se puede considerar "de ciencias de la computación" tanto como se puede considerar "matemática".
ReplyDeleteCreo que aún ahora la diferencia es sutil y está basada más que todo en sectarismos de lado y lado.
Siempre me he sentido muy orgulloso que en cierta manera mi carrera se le considere más cercana a las matemáticas que a la ingeniría pura. Es más si me preguntan yo prefiero referirme a mi carrera como las ciencias de la computación más que a Ingeniería de Sistemas.
ReplyDeleteLo que quería mostrar es que aún así la forma en enunciar el mismo problema para unos y para otros es muy distinta, nosotros (los "ingenieros") somos mucho menos formales a la hora de hacerlo.
PD. A pesar de lo que blueelepahnt dice, en la época en que se escribió la carta, ya existían muchos avances en ciencias de la computación. Para ese momento ya exsistía Fortran, y Lisp, lo cual indica que de hecho ya había avances en AI, lo cual me lleva a que también en otros campos de las ciencias de la computación.